Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106315, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783234

RESUMO

G protein-coupled receptor 17 (GPR17) and the WNT pathway are critical players of oligodendrocyte (OL) differentiation acting as essential timers in developing brain to achieve fully-myelinating cells. However, whether and how these two systems are related to each other is still unknown. Of interest, both factors are dysregulated in developing and adult brain diseases, including white matter injury and cancer, making the understanding of their reciprocal interactions of potential importance for identifying new targets and strategies for myelin repair. Here, by a combined pharmacological and biotechnological approach, we examined regulatory mechanisms linking WNT signaling to GPR17 expression in OLs. We first analyzed the relative expression of mRNAs encoding for GPR17 and the T cell factor/Lymphoid enhancer-binding factor-1 (TCF/LEF) transcription factors of the canonical WNT/ß-CATENIN pathway, in PDGFRα+ and O4+ OLs during mouse post-natal development. In O4+ cells, Gpr17 mRNA level peaked at post-natal day 14 and then decreased concomitantly to the physiological uprise of WNT tone, as shown by increased Lef1 mRNA level. The link between WNT signaling and GPR17 expression was further reinforced in vitro in primary PDGFRα+ cells and in Oli-neu cells. High WNT tone impaired OL differentiation and drastically reduced GPR17 mRNA and protein levels. In Oli-neu cells, WNT/ß-CATENIN activation repressed Gpr17 promoter activity through both putative WNT response elements (WRE) and upregulation of the inhibitor of DNA-binding protein 2 (Id2). We conclude that the WNT pathway influences OL maturation by repressing GPR17, which could have implications in pathologies characterized by dysregulations of the OL lineage including multiple sclerosis and oligodendroglioma.


Assuntos
Células Precursoras de Oligodendrócitos , Via de Sinalização Wnt , Camundongos , Animais , beta Catenina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo
2.
Cerebellum ; 22(6): 1137-1151, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36219306

RESUMO

Hom ozygous variants in the peptidyl-tRNA hydrolase 2 gene (PTRH2) cause infantile-onset multisystem neurologic, endocrine, and pancreatic disease. The objective is to delineate the mechanisms underlying the core cerebellar phenotype in this disease. For this, we generated constitutive (Ptrh2LoxPxhCMVCre, Ptrh2-/- mice) and Purkinje cell (PC) specific (Ptrh2LoxPxPcp2Cre, Ptrh2ΔPCmice) Ptrh2 mutant mouse models and investigated the effect of the loss of Ptrh2 on cerebellar development. We show that Ptrh2-/- knockout mice had severe postnatal runting and lethality by postnatal day 14. Ptrh2ΔPC PC specific knockout mice survived until adult age; however, they showed progressive cerebellar atrophy and functional cerebellar deficits with abnormal gait and ataxia. PCs of Ptrh2ΔPC mice had reduced cell size and density, stunted dendrites, and lower levels of ribosomal protein S6, a readout of the mammalian target of rapamycin pathway. By adulthood, there was a marked loss of PCs. Thus, we identify a cell autonomous requirement for PTRH2 in PC maturation and survival. Loss of PTRH2 in PCs leads to downregulation of the mTOR pathway and PC atrophy. This suggests a molecular mechanism underlying the ataxia and cerebellar atrophy seen in patients with PTRH2 mutations leading to infantile-onset multisystem neurologic, endocrine, and pancreatic disease.


Assuntos
Ataxia Cerebelar , Pancreatopatias , Humanos , Camundongos , Animais , Adulto , Ataxia/patologia , Células de Purkinje/fisiologia , Camundongos Knockout , Pancreatopatias/genética , Pancreatopatias/metabolismo , Pancreatopatias/patologia , Diferenciação Celular , Atrofia/patologia , Mamíferos
3.
Front Neurol ; 13: 1017654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341116

RESUMO

RhoGTPase regulators play a key role in the development of the nervous system, and their dysfunction can result in brain malformation and associated disorders. Several guanine nucleotide exchange factors (GEF) have been linked to neurodevelopmental disorders. In line with this, ARHGEF17 has been recently linked as a risk gene to intracranial aneurysms. Here we report siblings of a consanguineous Pakistani family with biallelic variants in the ARHGEF17 gene associated with a neurodevelopmental disorder with intellectual disability, speech delay and motor dysfunction but not aneurysms. Cranial MRI performed in one patient revealed generalized brain atrophy with an enlarged ventricular system, thin corpus callosum and microcephaly. Whole exome sequencing followed by Sanger sequencing in two of the affected individuals revealed a homozygous missense variant (g.11:73021307, c.1624C>T (NM_014786.4), p.R542W) in the ARHGEF17 gene. This variant is in a highly conserved DCLK1 phosphorylation consensus site (I/L/V/F/M]RRXX[pS/pT][I/L/M/V/F) of the protein. Our report expands the phenotypic spectrum of ARHGEF17 variants from increased intracranial aneurysm risk to neurodevelopmental disease and thereby add ARHGEF17 to the list of GEF genes involved in neurodevelopmental disorders.

4.
J Vis Exp ; (185)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35938804

RESUMO

Microglia, as brain resident macrophages, are fundamental to several functions, including response to environmental stress and brain homeostasis. Microglia can adopt a large spectrum of activation phenotypes. Moreover, microglia that endorse pro-inflammatory phenotype is associated with both neurodevelopmental and neurodegenerative disorders. In vitro studies are widely used in research to evaluate potential therapeutic strategies in specific cell types. In this context studying microglial activation and neuroinflammation in vitro using primary microglial cultures is more relevant than microglial cell lines or stem-cell-derived microglia. However, the use of some primary cultures might suffer from a lack of reproducibility. This protocol proposes a reproducible and relevant method of magnetically isolating microglia from neonate pups. Microglial activation using several stimuli after 4 h and 24 h by mRNA expression quantification and a Cy3-bead phagocytic assay is demonstrated here. The current work is expected to provide an easily reproducible technique for isolating physiologically relevant microglia from juvenile developmental stages.


Assuntos
Encéfalo , Microglia , Animais , Fenômenos Magnéticos , Camundongos , Cultura Primária de Células , Reprodutibilidade dos Testes
5.
Ann Neurol ; 91(1): 48-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741343

RESUMO

OBJECTIVES: In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro-inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. METHODS: Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin-1-beta [IL-1ß] and postnatal days 1-5) were used to uncover and elucidate the role of microRNA-146b-5p in microglial activation and WMI. RESULTS: A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro-inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA-146b-5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro-inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA-146b-5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA-146b-5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA-146b-5p specifically to microglia. Enhancing microglial miRNA-146b-5p overexpression significantly decreased LPS-induced activation, downregulated IRAK1, and restored miRNA-146b-5p levels in EVs. In our WMI model, 3DNA miRNA-146b-5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. INTERPRETATIONS: These findings support that miRNA-146b-5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long-term consequences. ANN NEUROL 2022;91:48-65.


Assuntos
Encéfalo/patologia , MicroRNAs/metabolismo , Microglia/patologia , Substância Branca/patologia , Animais , Camundongos , Neurogênese/fisiologia
6.
Ecotoxicol Environ Saf ; 224: 112635, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34418854

RESUMO

Groundwater is the main source of drinking water for a significant portion of the human population. In many agricultural areas, diffuse pollution such as high levels of total dissolved salts including nitrate, puts the quality of this resource at risk. However, the effect of exposure to these water contaminants on brain development is currently poorly understood. Here we characterised water from a borewell located in an intensely cultivated area (agricultural) or water from a borewell located in a nearby pristine forest. The agricultural borewell water was rich in nitrates with high total dissolved salts. We then studied the consequence of drinking the agricultural water on mouse brain development. For this, the agricultural borewell water or forest water was given to mice for 6 weeks before and during pregnancy and lactation. The brains of the offspring born to these dams were analysed at postnatal day (P)5 and P21 and compared using immunohistochemistry for changes in glial cells, neurons, myelin, and cell death across many brain regions. Brains from offspring born to dams who had been given agricultural water (versus forest control water) were significantly smaller, and at P21 had a significant degeneration of neurons and increased numbers of microglia in the motor cortex, had fewer white matter astrocytes and an increase in cell death, particularly in the dentate gyrus. This study shows that brain development is sensitive to water composition. It points to the importance of assessing neurodevelopmental delays when considering the effect of water contaminated with agricultural run offs on human health. MAIN FINDING: Pregnant and lactating mice were given borewell water from intensely cultivated land. Offspring brains reveal degeneration of neurons and a loss of astrocytes, increase in microglial cells and cell death, pointing to neurodevelopmental problems.

7.
Cell Death Dis ; 12(2): 166, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558485

RESUMO

A leading cause of preterm birth is the exposure to systemic inflammation (maternal/fetal infection), which leads to neuroinflammation and white matter injury (WMI). A wide range of cytokines and chemokines are expressed and upregulated in oligodendrocytes (OLs) in response to inflammation and numerous reports show that OLs express several receptors for immune related molecules, which enable them to sense inflammation and to react. However, the role of OL immune response in WMI is unclear. Here, we focus our study on toll-like receptor-3 (TLR3) that is activated by double-strand RNA (dsRNA) and promotes neuroinflammation. Despite its importance, its expression and role in OLs remain unclear. We used an in vivo mouse model, which mimics inflammation-mediated WMI of preterm born infants consisting of intraperitoneal injection of IL-1ß from P1 to P5. In the IL-1ß-treated animals, we observed the upregulation of Tlr3, IL-1ß, IFN-ß, Ccl2, and Cxcl10 in both PDGFRα+ and O4+ sorted cells. This upregulation was higher in O4+ immature OLs (immOLs) as compared to PDGFRα+ OL precursor cells (OPCs), suggesting a different sensitivity to neuroinflammation. These observations were confirmed in OL primary cultures: cells treated with TLR3 agonist Poly(I:C) during differentiation showed a stronger upregulation of Ccl2 and Cxcl10 compared to cells treated during proliferation and led to decreased expression of myelin genes. Finally, OLs were able to modulate microglia phenotype and function depending on their maturation state as assessed by qPCR using validated markers for immunomodulatory, proinflammatory, and anti-inflammatory phenotypes and by phagocytosis and morphological analysis. These results show that during inflammation the response of OLs can play an autonomous role in blocking their own differentiation: in addition, the immune activation of OLs may play an important role in shaping the response of microglia during inflammation.


Assuntos
Diferenciação Celular , Proliferação de Células , Encefalite/metabolismo , Leucoencefalopatias/metabolismo , Oligodendroglia/metabolismo , Receptor 3 Toll-Like/metabolismo , Substância Branca/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/genética , Encefalite/imunologia , Encefalite/patologia , Feminino , Mediadores da Inflamação/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/imunologia , Leucoencefalopatias/patologia , Masculino , Camundongos , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/imunologia , Oligodendroglia/patologia , Poli I-C/farmacologia , Gravidez , Nascimento Prematuro , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/agonistas , Substância Branca/efeitos dos fármacos , Substância Branca/imunologia , Substância Branca/patologia
8.
Cerebellum ; 19(5): 645-664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32495183

RESUMO

Cerebellar granule neuron progenitors (CGNPs) give rise to the cerebellar granule neurons in the developing cerebellum. Generation of large number of these neurons is made possible by the high proliferation rate of CGNPs in the external granule layer (EGL) in the dorsal cerebellum. Here, we show that upregulation of ß-catenin can maintain murine CGNPs in a state of proliferation. Further, we show that ß-catenin mRNA and protein levels can be regulated by the mitogen Sonic hedgehog (Shh). Shh signaling led to an increase in the level of the transcription factor N-myc. N-myc was found to bind the ß-catenin promoter, and the increase in ß-catenin mRNA and protein levels could be prevented by blocking N-myc upregulation downstream of Shh signaling. Furthermore, blocking Wingless-type MMTV integration site (Wnt) signaling by Wnt signaling pathway inhibitor Dickkopf 1 (Dkk-1) in the presence of Shh did not prevent the upregulation of ß-catenin. We propose that in culture, Shh signaling regulates ß-catenin expression through N-myc and results in increased CGNP proliferation.


Assuntos
Proliferação de Células/fisiologia , Proteínas Hedgehog/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Neoplasias Cerebelares/genética , Cerebelo/metabolismo , Interneurônios/metabolismo , Meduloblastoma/genética , Camundongos Endogâmicos BALB C , beta Catenina/genética
9.
Cell Rep ; 31(2): 107506, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294449

RESUMO

A distinctive feature of neocortical development is the highly coordinated production of different progenitor cell subtypes, which are critical for ensuring adequate neurogenic outcome and the development of normal neocortical size. To further understand the mechanisms that underlie neocortical growth, we focused our studies on the microcephaly gene Mcph1, and we report here that Mcph1 (1) exerts its functions in rapidly dividing apical radial glial cells (aRGCs) during mouse neocortical development stages that precede indirect neurogenesis; (2) is expressed at mitochondria; and (3) controls the proper proliferation and survival of RGCs, potentially through crosstalk with cellular metabolic pathways involving the stimulation of mitochondrial activity via VDAC1/GRP75 and AKT/HK2/VDAC1 and glutaminolysis via ATF4/PCK2. We currently report the description of a MCPH-gene implication in the interplay between bioenergetic pathways and neocortical growth, thus pointing to alterations of cellular metabolic pathways, in particular glutaminolysis, as a possible cause of microcephalic pathogenesis.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Microcefalia/genética , Microcefalia/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcefalia/fisiopatologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
10.
Pediatr Res ; 85(2): 155-165, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446768

RESUMO

Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Doenças do Sistema Nervoso Central/fisiopatologia , Recém-Nascido Prematuro , Inflamação/fisiopatologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Humanos , Recém-Nascido , Inflamação/patologia
11.
Cell Death Differ ; 25(10): 1837-1854, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30050059

RESUMO

Zika virus (ZV) infects neural stem cells (NSCs) and causes quiescence in NSCs, reducing the pool of brain cells, leading to microcephaly. Despite conscientious efforts, the molecular mechanisms for ZV-mediated effects on NSCs lack clarity. This study aimed to explore the underlying mechanisms for ZV-mediated induction of quiescence in the primary cultures of human fetal neural stem cells (fNSCs). We demonstrate that expression of ZV envelope (E) protein displays maximum quiescence in human fNSCs by accumulating cells in the G0/G1 phase of the cell cycle as compared to other non-structural proteins, viz. NS2A, NS4A and NS4B. E protein induces immature differentiation by induction of pro-neuronal genes in proliferating fNSCs, induces apoptosis in differentiating fNSCs 3 days post differentiation, and disrupts migration of cells from differentiating neurospheres. In utero electroporation of mouse brain with E protein shows drastic downregulation of proliferating cells in ventricular and subventricular zone regions. Global microRNA sequencing suggests that E protein modulates miRNA circuitry. Among differentially expressed miRNAs, we found 14 upregulated and 11 downregulated miRNAs. Mir-204-3p and mir-1273g-3p directly regulate NOTCH2 and PAX3 expression, respectively, by binding to their 3'UTR. Bioinformatic analysis using GO analysis for the targets of differentially expressed miRNAs revealed enrichment of cell cycle and developmental processes. Furthermore, WNT, CCKR, PDGF, EGF, p53, and NOTCH signaling pathways were among the top enriched pathways. Thus, our study provides evidence for the involvement of ZV E protein and novel insights into the molecular mechanism through identification of miRNA circuitry. Art work depicting the effect of Zika virus E protein on human fetal neural stem cells.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/metabolismo , Proteínas do Envelope Viral/metabolismo , Zika virus/metabolismo , Regiões 3' não Traduzidas , Antagomirs/metabolismo , Apoptose , Diferenciação Celular , Sobrevivência Celular , Regulação para Baixo , Feto/citologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Receptor Notch2/química , Receptor Notch2/genética , Receptor Notch2/metabolismo , Transdução de Sinais , Regulação para Cima , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/metabolismo
12.
Cerebellum ; 17(5): 685-691, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29663194

RESUMO

An inherent asymmetry exists between the two centrosomes of a dividing cell. One centrosome is structurally more mature (mother centrosome) than the other (daughter centrosome). Post division, one daughter cell inherits the mother centrosome while the other daughter cell inherits the daughter centrosome. Remarkably, the kind of centrosome inherited is associated with cell fate in several developmental contexts such as in radial glial progenitors in the developing mouse cortex, Drosophila neuroblast divisions and in Drosophila male germline stem cells. However, the role of centrosome inheritance in granule neuron progenitors in the developing cerebellum has not been investigated. Here, we show that mother and daughter centrosomes do exist in these progenitors, and the amount of pericentriolar material (PCM) each centrosome possesses is different. However, we failed to observe any correlation between the fate adopted by the daughter cell and the nature of centrosome it inherited.


Assuntos
Centrossomo/fisiologia , Cerebelo/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Proteínas de Choque Térmico/metabolismo , Imuno-Histoquímica , Mesencéfalo/citologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/metabolismo , Camundongos , Mitose/fisiologia
13.
Cell Death Dis ; 9(2): 65, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352115

RESUMO

Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Microcefalia/genética , Neoplasias/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
PLoS One ; 10(8): e0136684, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322982

RESUMO

Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.


Assuntos
Processamento Alternativo/genética , Proteínas de Ciclo Celular/genética , Animais , Sequência de Bases , Encéfalo/crescimento & desenvolvimento , Proliferação de Células , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/fisiologia , Isoformas de Proteínas/genética , Análise de Sequência de DNA
15.
Biol Open ; 4(7): 865-72, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25979710

RESUMO

The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of ß-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of ß-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of ß-Catenin was shown to occur towards the source of a localized extracellular cue.

16.
Ann Clin Transl Neurol ; 1(10): 739-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25493266

RESUMO

OBJECTIVES: Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. METHODS: We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. RESULTS: HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. INTERPRETATION: HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.

17.
Ann Clin Transl Neurol ; 1(12): 968-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25574472

RESUMO

OBJECTIVE: Transplanting exogenous neuronal progenitors to replace damaged neurons in the adult brain following injury or neurodegenerative disorders and achieve functional amelioration is a realistic goal. However, studies so far have rarely taken into consideration the preexisting inflammation triggered by the disease process that could hamper the effectiveness of transplanted cells. Here, we examined the fate and long-term consequences of human cerebellar granule neuron precursors (GNP) transplanted into the cerebellum of Harlequin mice, an adult model of progressive cerebellar degeneration with early-onset microgliosis. METHODS: Human embryonic stem cell-derived progenitors expressing Atoh1, a transcription factor key to GNP specification, were generated in vitro and stereotaxically transplanted into the cerebellum of preataxic Harlequin mice. The histological and functional impact of these transplants was followed using immunolabeling and Rotarod analysis. RESULTS: Although transplanted GNPs did not survive beyond a few weeks, they triggered the proliferation of endogenous nestin-positive precursors in the leptomeninges that crossed the molecular layer and differentiated into mature neurons. These phenomena were accompanied by the preservation of the granule and Purkinje cell layers and delayed ataxic changes. In vitro neurosphere generation confirmed the enhanced neurogenic potential of the cerebellar leptomeninges of Harlequin mice transplanted with exogenous GNPs. INTERPRETATION: The cerebellar leptomeninges of adult mice contain an endogenous neurogenic niche that can be stimulated to yield mature neurons from an as-yet unidentified population of progenitors. The transplantation of human GNPs not only stimulates this neurogenesis, but, despite the potentially hostile environment, leads to neuroprotection and functional amelioration.

18.
Horm Behav ; 64(1): 26-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23631927

RESUMO

"The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre+post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups."


Assuntos
Glucocorticoides/metabolismo , Deficiências de Ferro , Transtornos da Memória/psicologia , Percepção Espacial/fisiologia , Animais , Animais Recém-Nascidos , Antimetabólitos , Bromodesoxiuridina , Contagem de Células , Giro Denteado/metabolismo , Feminino , Hipocampo/metabolismo , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Neurogênese/fisiologia , Neuroglia/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Desempenho Psicomotor/fisiologia
19.
Stem Cells ; 31(4): 652-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23225629

RESUMO

Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Doxiciclina/farmacologia , Eletrofisiologia , Células-Tronco Embrionárias/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neuroglia/citologia , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
Br J Nutr ; 107(8): 1167-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22050885

RESUMO

Maternal malnutrition affects every aspect of fetal development. The present study asked the question whether a low-protein diet of the mother could result in motor deficits in the offspring. Further, to examine whether cerebellar pathology was correlated with motor deficits, several parameters of the postnatal development of the cerebellum were assayed. This is especially important because the development of the cerebellum is unique in that the time scale of development is protracted compared with that of the cortex or hippocampus. The most important result of the study is that animals born to protein-deficient mothers showed significant delays in motor development as assessed by rotarod and gait analysis. These animals also showed reduced cell proliferation and reduced thickness in the external granular layer. There was a reduction in the number of calbindin-positive Purkinje cells (PC) and granular cells in the internal granular layer. However, glial fibrillary acidic protein-positive population including Bergmann glia remained unaffected. We therefore conclude that the development of the granular cell layer and the PC is specifically prone to the effects of protein malnutrition potentially due to their protracted developmental period from approximately embryonic day 11 to 13 until about the third postnatal week.


Assuntos
Cerebelo/anormalidades , Desnutrição Proteico-Calórica/complicações , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal , Calbindinas , Proliferação de Células , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Cerebelo/fisiopatologia , Feminino , Proteína Glial Fibrilar Ácida , Troca Materno-Fetal , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Desempenho Psicomotor/fisiologia , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Proteína G de Ligação ao Cálcio S100/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...